PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding
نویسنده
چکیده
To simplify complicated traditional cost estimation flow, this study emphasizes the cost estimation approach for plastic injection products and molds. It is expected designers and R&D specialists can consider the competitiveness of product cost in the early stage of product design to reduce product development time and cost resulting from repetitive modification. Therefore, the proposed cost estimation approach combines factor analysis (FA), particle swarm optimization (PSO) and artificial neural network with two back-propagation networks, called FAPSO-TBP. In addition, another artificial neural network estimation approach with a single back-propagation network, called FAPSO-SBP, is also established. To verify the proposed FAPSO-TBP approach, comparisons with the FAPSO-SBP and general back-propagation artificial neural network (GBP) are made. The computational results show the proposed FAPSOTBP approach is very competitive for the product and mold cost estimation problems of plastic injection
منابع مشابه
Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملCost Estimation of Plastic Injection Products through Back-Propagation Network
With science and technology development, the world plastics production and consumption have been increasing continuously in the recent twenty years. The plastic injection molding has become the most widely applied mass-production technology, as it can shorten the finished product manufacturing cycle to raise productivity with products of low plastics waste, high size precision and high quality ...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملA neural network-based approach for dynamic quality prediction in a plastic injection molding process
This paper presents an innovative neural network-based quality prediction system for a plastic injection molding process. A self-organizing map plus a back-propagation neural network (SOM-BPNN) model is proposed for creating a dynamic quality predictor. Three SOM-based dynamic extraction parameters with six manufacturing process parameters and one level of product quality were dedicated to trai...
متن کاملEstimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network
The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Industrial Engineering
دوره 58 شماره
صفحات -
تاریخ انتشار 2010